Vector Variational Inequalities for Nondifferentiable Convex Vector Optimization Problems ${ }^{\star}$

GUE MYUNG LEE and KWANG BAIK LEE
Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea (E-mail: gmlee@pknu.ac.kr)

(Received 16 February 2004; accepted in revised form 10 March 2004)

Abstract

In this paper, we consider a nondifferentiable convex vector optimization problem (VP), and formulate several kinds of vector variational inequalities with subdifferentials. Here we examine relations among solution sets of such vector variational inequalities and (VP).

Mathematics Subject Classification (2000). 90C25, 90C29, 65 K 10
Key words: Efficient solutions, Nondifferentiable convex vector optimization, Polyhedral convex functions, Polyhedral convex sets, Vector variational inequalities

1. Introduction and preliminary results

We consider the following scalar convex optimization problem.

$$
\begin{array}{ll}
\text { Minimize } & f(x) \tag{SP}\\
\text { subject to } & x \in D,
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function and D is a convex subset of \mathbb{R}^{n}. The subdifferential of f at $x \in \mathbb{R}^{n}$ is defined as follows: $\partial f(x)=\left\{\xi \in \mathbb{R}^{n} \mid f(y) \geqslant\right.$ $\left.f(x)+\langle\xi, y-x\rangle \quad \forall y \in \mathbb{R}^{n}\right\}$.
We can consider two variational inequalities for (SP)
(VI) Find $\bar{x} \in D$ such that $\exists \xi \in \partial f(\bar{x})$ such that $\langle\xi, x-\bar{x}\rangle \geqslant$ $0 \quad \forall x \in D$.
(MVI) Find $\bar{x} \in D$ such that $\forall x \in D, \forall \xi \in \partial f(x)\langle\xi, x-\bar{x}\rangle \geqslant 0$.

We denote the solution sets of (SP), (VI) and (MVI) by $\operatorname{sol}(\mathrm{SP}), \operatorname{sol}(\mathrm{VI})$ and $\operatorname{sol}(\mathrm{MVI})$, respectively.
Then it is well known that

$$
\operatorname{sol}(\mathrm{SP})=\operatorname{sol}(\mathrm{VI})=\operatorname{sol}(\mathrm{MVI})
$$

[^0]This means that variational inequality can be a strong tool for studying the solution set of (SP).
Now we consider the following vector optimization problem
(VP) Minimize $f(x):=\left(f_{1}(x), \ldots, f_{p}(x)\right)$
subject to $x \in D$,
where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$, are functions and D is a subset of \mathbb{R}^{n}.
Solving (VP) means to find the (properly, weakly) efficient solutions which are defined as follows.

DEFINITION 1.1. (1) $\bar{x} \in D$ is said to be an efficient solution of (VP) if for any $x \in D$,

$$
\left(f_{1}(x)-f_{1}(\bar{x}), \ldots, f_{p}(x)-f_{p}(\bar{x})\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\},
$$

where \mathbb{R}_{+}^{p} is the nonnegative orthant of \mathbb{R}^{p}.
(2) $\bar{x} \in D$ is called a properly efficient solution of (VP) if $\bar{x} \in D$ is an efficient solution of (VP) and there exists a constant $M>0$ such that for each $i=1, \ldots, p$, we have

$$
\frac{f_{i}(\bar{x})-f_{i}(x)}{f_{j}(x)-f_{j}(\bar{x})} \leqslant M
$$

for some j such that $f_{j}(x)>f_{j}(\bar{x})$ whenever $x \in D$ and $f_{i}(x)<f_{i}(\bar{x})$.
(3) $\bar{x} \in D$ is said to be a weakly efficient solution of (VP) if for any $x \in D$,

$$
\left(f_{1}(x)-f_{1}(\bar{x}), \ldots, f_{p}(x)-f_{p}(\bar{x})\right) \notin-\operatorname{int} \mathbb{R}_{+}^{p},
$$

where int \mathbb{R}_{+}^{p} is the interior of \mathbb{R}_{+}^{p}.
We denote the set of all the efficient solution of (VP), the set of all the weakly efficient solution of (VP), the set of all the properly efficient solution of (VP) by $E f f(\mathrm{VP}), W E f f(\mathrm{VP})$ and $\operatorname{Pr} E f f(\mathrm{VP})$, respectively.
It is clear that $\operatorname{Pr} E f f(\mathrm{VP}) \subset E f f(\mathrm{VP}) \subset W E f f(\mathrm{VP})$. For basic meanings and properties of such solution sets, see [1].
Throughout this paper, we will assume that the objective functions $f_{i}, i=$ $1, \ldots, p$, are convex and the constraint set D is a closed convex subset of \mathbb{R}^{n}.
Recently, Giannessi [2] considered the following vector variational inequalities for a differentiable convex vector optimization (VP) (when f_{i}, $i=1, \ldots, p$, are differentiable)
$(\mathrm{VVI})_{\nabla} \quad$ Find $\bar{x} \in D$ such that

$$
\left(\left\langle\nabla f_{1}(\bar{x}), x-\bar{x}\right\rangle, \ldots,\left\langle\nabla f_{p}(\bar{x}), x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}, \quad \forall x \in D,
$$

where $\nabla f_{i}(x)$ is the gradient of f_{i} at x and $\langle\cdot, \cdot\rangle$ is the scalar product on \mathbb{R}^{n}.
$(\mathrm{MVVI})_{\nabla} \quad$ Find $\bar{x} \in D$ such that $\left(\left\langle\nabla f_{1}(x), x-\bar{x}\right\rangle, \ldots,\left\langle\nabla f_{p}(x), x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}, \forall x \in D$.
$(W V V I)_{\nabla} \quad$ Find $\bar{x} \in D$ such that
$\left(\left\langle\nabla f_{1}(\bar{x}), x-\bar{x}\right\rangle, \ldots,\left\langle\nabla f_{p}(\bar{x}), x-\bar{x}\right\rangle\right) \notin$-int $\mathbb{R}_{+}^{p}, \quad \forall x \in D$. where int \mathbb{R}_{+}^{p} is the interior of \mathbb{R}_{+}^{p}.

He proved that if $f_{i}, i=1, \ldots, p$, are differentiable, then

$$
\operatorname{sol}(\mathrm{VVI})_{\nabla} \subset \operatorname{sol}(\mathrm{MVVI})_{\nabla}=E f f(\mathrm{VP}) \subset W E f f(\mathrm{VP})=\operatorname{sol}(\mathrm{WVVI})_{\nabla} .
$$

Being inspired by the above-mentioned Giannessi's result, many authors ([3-7]) have studied relations between vector variational inequalities and vector optimization problems.
In this paper, we consider scalar or vector variational inequalities for the nondifferentiable convex vector optimization problem (VP), which are formulated as below, and investigate relations among solution sets of such variational inequality problem and (VP). Our vector variational inequalities with subdifferentials can be regarded as special cases of usual ones with multifunctions. So, our results can be helpful for studying solution sets of nondifferentiable convex vector optimization problems and usual vector variational inequalities with multifunctions.
(VI) $)_{\lambda} \quad$ Find $\bar{x} \in D$ such that $\exists \xi_{i} \in \partial f_{i}(\bar{x}), i=1, \ldots, p$, such that $\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \mathbb{R}_{+}^{p} \backslash\{0\}$.
$(\mathrm{MVI})_{\lambda} \quad$ Find $\bar{x} \in D$ such that $\forall x \in D, \exists \xi_{i} \in \partial f_{i}(x), \quad i=1, \ldots, p$, $\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0$.
$(\mathrm{VVI})_{1} \quad$ Find $\bar{x} \in D$ such that $\forall x \in D, \forall \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}$.
$(\mathrm{VVI})_{2} \quad$ Find $\bar{x} \in D$ such that $\exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}, \quad \forall x \in D$.
$(\mathrm{VVI})_{3} \quad$ Find $\bar{x} \in D$ such that $\forall x \in D, \exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}$.
(MVVI) Find $\bar{x} \in D$ such that $\forall x \in D, \forall \xi_{i} \in \partial f_{i}(x), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-\mathbb{R}_{+}^{p} \backslash\{0\}$.
(WVVI) $)_{1} \quad$ Find $\bar{x} \in D$ such that $\forall x \in D, \forall \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-$ int \mathbb{R}_{+}^{p}.
$(\mathrm{WVVI})_{2} \quad$ Find $\bar{x} \in D$ such that $\exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-$ int $\mathbb{R}_{+}^{p} \quad \forall x \in D$.
$(\mathrm{WVVI})_{3} \quad$ Find $\bar{x} \in D$ such that $\forall x \in D, \exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-$ int \mathbb{R}_{+}^{p}.
(WMVVI) Find $\bar{x} \in D$ such that $\forall x \in D, \forall \xi_{i} \in \partial f_{i}(x), \quad i=1, \ldots, p$, such that $\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \notin-i n t \mathbb{R}_{+}^{p}$.

We denote the solution sets of the above inequality problems by $\operatorname{sol}(\mathrm{VI})_{\lambda}$, $\operatorname{sol}(\mathrm{MVI})_{\lambda}, \operatorname{sol}(\mathrm{VVI}), \ldots, \operatorname{sol}(\mathrm{WMVVI})$, respectively.
Now we give preliminary results which are needed in next sections.

LEMMA 1.1. [8] $\bar{x} \in \operatorname{PrEff}(V P)$ if and only if $\exists \lambda_{i}>0, i=1, \ldots, p$ such that \bar{x} is a solution of the following scalar optimization problem
$\begin{array}{ll}\text { Minimize } & \sum_{i=1}^{p} \lambda_{i} f_{i}(x) \\ \text { subject to } & x \in D .\end{array}$

LEMMA 1.2. [9] If the objective functions $f_{i}, i=1, \ldots, p$, are linear and the constraint set D is a polyhedral convex subset of \mathbb{R}^{n}, then $\operatorname{Pr} E f f(V P)=E f f(V P)$.

LEMMA 1.3. [10] $\bar{x} \in W E f f(V P)$ if and only if $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p$, $\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ such that \bar{x} is a solution of the following scalar optimization problem

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{p} \lambda_{i} f_{i}(x) \\
\text { subject to } & x \in D .
\end{array}
$$

LEMMA 1.4. Let A be a convex subset of \mathbb{R}^{n} and let B be a compact convex subset of \mathbb{R}^{n}. Assume that $0 \in A$. Then the following statements are equivalent
(i) $\exists b \in B$ such that $\langle b, a\rangle \geqslant 0 \quad \forall a \in A$.
(ii) $\forall a \in A, \exists b \in B$ such that $\langle b, a\rangle \geqslant 0$.

Proof. Let $f(x)=\max _{b \in B}\langle b, x\rangle$. Then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function and $\partial f(0)=B$. Moreover, we have
(ii) $\Longleftrightarrow \max _{b \in B}\langle b, a\rangle \geqslant 0 \quad \forall a \in A$,
$\Longleftrightarrow f(a) \geqslant f(0) \quad \forall a \in A$,
$\Longleftrightarrow 0 \in \partial f(0)+N_{A}(0)$, where $N_{A}(0)$ is the normal cone to A to 0,
$\Longleftrightarrow \exists b \in B$ such that $\langle b, a\rangle \geqslant 0 \quad \forall a \in A$, $\Longleftrightarrow(i)$.

The following lemma is a generalized Gordan theorem for convex functions.

LEMMA 1.5. [11] Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$ be convex functions and let D be a convex subset of \mathbb{R}^{n}.

Then the following statements are equivalent
(i) there is no $x \in D$ such that $f_{i}(x)<0$ for all $i=1, \ldots, p$.
(ii) $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ such that $\sum_{i=1}^{p} \lambda_{i} f_{i}(x) \geqslant 0 \quad \forall x \in D$.

2. Relations

Now we give relations among solution sets of the convex vector optimization problem (VP) and the vector variational inequality problems.

THEOREM 2.1. The following are true
(1) $\operatorname{sol}(V V I)_{1} \subset \operatorname{sol}(V V I)_{2}$.
(2) $\operatorname{Pr} E f f(V P)=\bigcup_{\lambda \in \operatorname{int} \mathbb{R}_{+}^{p}} \operatorname{sol}(V I)_{\lambda} \subset \operatorname{sol}(V V I)_{2} \subset \operatorname{sol}(V V I)_{3}$

$$
\subset \operatorname{sol}(M V V I)=E f f(V P)
$$

Proof. It is clear that $\operatorname{sol}(\mathrm{VVI})_{1} \subset \operatorname{sol}(\mathrm{VVI})_{2}$.
Now we prove that $\operatorname{Pr} E f f(\mathrm{VP})=\bigcup_{\lambda \in \operatorname{int} \mathbb{R}_{+}^{p}} \operatorname{sol}(\mathrm{VI})_{\lambda}$. By Lemma 1.1, $\bar{x} \in$ $\operatorname{Pr} E f f(\mathrm{VP})$ if and only if $\exists \lambda_{i}>0, i=1, \ldots, p$, such that $\bar{x} \in D$ is a solution of the following scalar optimization problem (SP)

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{p} \lambda_{i} f_{i}(x) \tag{SP}\\
\text { subject to } & x \in D
\end{array}
$$

Furthermore, it is well known that the fact that $\bar{x} \in D$ is a solution of (SP) is equivalent to $\bar{x} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$. We can easily check that

$$
\bigcup_{\lambda \in \operatorname{int\mathbb {R}_{+}^{P}}} \operatorname{sol}(\mathrm{VI})_{\lambda} \subset \operatorname{sol}(\mathrm{VVI})_{2} \subset \operatorname{sol}(\mathrm{VVI})_{3}
$$

From the monotonicity of the subdifferential of f_{i}, we can prove that $\operatorname{sol}(\mathrm{VVI})_{3} \subset \operatorname{sol}(\mathrm{MVVI})$.
It was proved in Ref. [3] that $E f f(\mathrm{VP})=\operatorname{sol}(\mathrm{MVVI})$. For the completeness, we prove that $E f f(\mathrm{VP})=\operatorname{sol}(\mathrm{MVVI})$. It can be easily proved that $E f f(\mathrm{VP}) \subset \operatorname{sol}(\mathrm{MVVI})$. Now we prove that $\operatorname{sol}(\mathrm{MVVI}) \subset E f f(\mathrm{VP})$.
Let $\bar{x} \in \operatorname{sol}(\mathrm{MVVI})$. Suppose to the contrary that $\bar{x} \notin E f f(\mathrm{VP})$. Then there exists $z \in D$ such that

$$
\begin{equation*}
\left(f_{1}(z)-f_{1}(\bar{x}), \ldots, f_{p}(z)-f_{p}(\bar{x})\right) \in-\mathbb{R}_{+}^{p} \backslash\{0\} . \tag{2.1}
\end{equation*}
$$

Since D is convex, we have $z(\alpha):=\alpha \bar{x}+(1-\alpha) z \in D$ for any $\alpha \in[0,1]$. Since f_{i} is convex, $f_{i}(z(\alpha)) \leqslant \alpha f_{i}(\bar{x})+(1-\alpha) f_{i}(z)$ for any $\alpha \in[0,1]$ and hence $f_{i}(z(\alpha))-f_{i}(\bar{x}) \leqslant(\alpha-1)\left[f_{i}(\bar{x})-f_{i}(z)\right]$ for any $\alpha \in[0,1]$. So we have

$$
\frac{f_{i}(z(\alpha))-f_{i}(z(1))}{\alpha-1} \geqslant f_{i}(\bar{x})-f_{i}(z) \quad \text { for any } \alpha \in(0,1) .
$$

By Lebourg's Mean Value Theorem in Ref. [12], there exist $\alpha_{i} \in(0,1)$ and $\xi_{i} \in \partial f_{i}\left(z\left(\alpha_{i}\right)\right), i=1, \ldots, p$, such that

$$
\begin{equation*}
\left\langle\xi_{i}, \bar{x}-z\right\rangle \geqslant f_{i}(\bar{x})-f_{i}(z) \tag{2.2}
\end{equation*}
$$

Suppose that $\alpha_{1}, \ldots, \alpha_{p}$ are equal. Then it follows from (2.1) and (2.2) that $\bar{x} \in D$ is not a solution of (MVVI), which contradicts the fact that $\bar{x} \in$ sol(MVVI).

Suppose that $\alpha_{1}, \ldots, \alpha_{p}$ are not equal. Let $\alpha_{1} \neq \alpha_{2}$. From (2.2), we have

$$
\begin{equation*}
\left\langle\xi_{1}, \bar{x}-z\right\rangle \geqslant f_{1}(\bar{x})-f_{1}(z) \text { and }\left\langle\xi_{2}, \bar{x}-z\right\rangle \geqslant f_{2}(\bar{x})-f_{2}(z) . \tag{2.3}
\end{equation*}
$$

Since f_{1} and f_{2} are convex, we have

$$
\begin{equation*}
\left\langle\xi_{1}-\xi_{2}^{*}, z\left(\alpha_{1}\right)-z\left(\alpha_{2}\right)\right\rangle \geqslant 0 \quad \text { for any } \quad \xi_{2}^{*} \in \partial f_{1}\left(z\left(\alpha_{2}\right)\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\xi_{1}^{*}-\xi_{2}, z\left(\alpha_{1}\right)-z\left(\alpha_{2}\right)\right\rangle \geqslant 0 \quad \text { for any } \xi_{1}^{*} \in \partial f_{2}\left(z\left(\alpha_{1}\right)\right) . \tag{2.5}
\end{equation*}
$$

If $\alpha_{1}<\alpha_{2}$, from (2.4), $\left\langle\xi_{1}-\xi_{2}^{*}, \bar{x}-z\right\rangle \leqslant 0$ and hence from (2.3), we have

$$
\left\langle\xi_{2}^{*}, \bar{x}-z\right\rangle \geqslant f_{1}(\bar{x})-f_{1}(z) \quad \text { for any } \xi_{2}^{*} \in \partial f_{1}\left(z\left(\alpha_{2}\right)\right) .
$$

If $\alpha_{2}<\alpha_{1}$, from (2.5), $\left\langle\xi_{1}^{*}-\xi_{2}, \bar{x}-z\right\rangle \geqslant 0$ and hence from (2.3), we have

$$
\left\langle\xi_{1}^{*}, \bar{x}-z\right\rangle \geqslant f_{2}(\bar{x})-f_{2}(z) \quad \text { for any } \xi_{1}^{*} \in \partial f_{2}\left(z\left(\alpha_{1}\right)\right) .
$$

Therefore, if $\alpha_{1} \neq \alpha_{2}$, letting $\hat{\alpha}^{*}=\max \left\{\alpha_{1}, \alpha_{2}\right\}$, we can find $\bar{\xi}_{i} \in \partial f_{i}\left(z\left(\hat{\alpha}^{*}\right)\right)$, $i=1,2$, such that $\left\langle\bar{\xi}_{i}, \bar{x}-z\right\rangle \geqslant f_{i}(\bar{x})-f_{i}(z)$.

By continuing this process, we can find $\hat{\alpha} \in(0,1)$ and $\bar{\xi}_{i} \in \partial f_{i}(z(\hat{\alpha}))$, $i=1, \ldots, p$, such that

$$
\begin{equation*}
\left\langle\bar{\xi}_{i}, \bar{x}-z\right\rangle \geqslant f_{i}(\bar{x})-f_{i}(z) \tag{2.6}
\end{equation*}
$$

From (2.1) and (2.6), $\bar{\xi}_{i} \in \partial f_{i}(z(\hat{\alpha})), i=1, \ldots, p$, and

$$
\begin{equation*}
\left(\left\langle\bar{\xi}_{1}, \bar{x}-z\right\rangle, \ldots,\left\langle\bar{\xi}_{p}, \bar{x}-z\right\rangle\right) \in \mathbb{R}_{+}^{p} \backslash\{0\} \tag{2.7}
\end{equation*}
$$

Multiplying both sides of (2.7) by $\hat{\alpha}-1$, we obtain

$$
\left(\left\langle\bar{\xi}_{1}, z(\hat{\alpha})-\bar{x}\right\rangle, \ldots,\left\langle\bar{\xi}_{p}, z(\hat{\alpha})-\bar{x}\right\rangle\right) \in-\mathbb{R}_{+}^{p} \backslash\{0\},
$$

which contradicts the fact that $\bar{x} \in \operatorname{sol}(\mathrm{MVVI})$.
Now we give examples for the relations in Theorem 2.1.
EXAMPLE 2.1. [13] It may not be true that

$$
\operatorname{sol}(\mathrm{VVI})_{2} \subset \operatorname{Pr} E f f(\mathrm{VP})
$$

Let $f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)=\left((1 / 2) \mu x^{2}+(1 / 2) y^{2},(1 / 2) x^{2}+(1 / 2) y^{2}\right)$ and $D:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-2)^{2}+(y-2)^{2} \leqslant 1\right\}$, where $\mu=(24 \sqrt{7}-21) / 35$.
Then $(\bar{x}, \bar{y}):=(5 / 4,2-(\sqrt{7} / 4)) \in \operatorname{sol}(\mathrm{VVI})_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid(5 / 4) \leqslant x \leqslant\right.$ $\left.2-(\sqrt{2} / 2),(x-2)^{2}+(y-2)^{2}=1\right\}$, but $(\bar{x}, \bar{y}) \notin \bigcup_{\lambda \in \operatorname{int} \mathbb{R}_{+}^{p}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid(5 / 4)<x<2-(\sqrt{2} / 2),(x-2)^{2}+(y-2)^{2}=1\right\}$. See Ref. [13] for the calculations of $\operatorname{sol}(\mathrm{VVI})_{2}$ and $\bigcup_{\lambda \in \operatorname{int}} \mathbb{R}_{ \pm}^{p o l}(\mathrm{VI})_{\lambda}$. From Theorem 2.1, $\bigcup_{\lambda \in \operatorname{int} \mathbb{R}_{+}^{p}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\operatorname{Pr} E f f(\mathrm{VP})$. Hence $(\bar{x}, \bar{y}) \notin \operatorname{Pr} E f f(\mathrm{VP})$.

EXAMPLE 2.2. It may not be true that

$$
\operatorname{sol}(\mathrm{VVI})_{3} \subset \operatorname{sol}(\mathrm{VVI})_{2}
$$

Let $f_{1}(x, y)=\sqrt{x^{2}+y^{2}}+y, f_{2}(x, y)=y$ and $D:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant\right.$ $0,-\sqrt{-x} \leqslant y \leqslant 0\}$. If $(x, y)=(0,0), \partial f_{1}(x, y)=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1}^{2}+v_{2}^{2} \leqslant 1\right\}+$ $\{(0,1)\}=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1}^{2}+\left(v_{2}-1\right)^{2} \leqslant 1\right\}$, and if $(x, y) \neq(0,0), \partial f_{1}(x, y)=$ $\left\{\left(x / \sqrt{x^{2}+y^{2}},\left(y / \sqrt{x^{2}+y^{2}}\right)+1\right)\right\}$.

We can check that $\forall\left(v_{1}, v_{2}\right) \in \partial f_{1}(0,0), \exists(x, y) \in D$ such that

$$
\left(v_{1} x+v_{2} y, y\right) \in-\mathbb{R}_{+}^{2} \backslash\{0\},
$$

and that $\forall(x, y) \in D, \exists\left(v_{1}, v_{2}\right) \in \partial f_{1}(0,0)$ such that

$$
\left(v_{1} x+v_{2} y, y\right) \notin-\mathbb{R}_{+}^{2} \backslash\{0\} .
$$

Hence $(0,0) \in \operatorname{sol}(\mathrm{VVI})_{3}$, but $(0,0) \notin \operatorname{sol}(\mathrm{VVI})_{2}$.
Moreover, $\operatorname{sol}(\mathrm{VVI})_{2}=\{(x,-\sqrt{-x}) \mid x<0\}$ and $\operatorname{sol}(\mathrm{VVI})_{3}=\{(x,-\sqrt{-x}) \mid$ $x \leqslant 0\}$.

EXAMPLE 2.3. [2] It may not be true that

$$
\operatorname{sol}(\mathrm{MVVI}) \subset \operatorname{sol}(\mathrm{VVI})_{3} .
$$

Let $f_{1}(x)=x, f_{2}(x)=x^{2}$ and $D=(-\infty, 0]$.
Since $(x, 0) \in-\mathbb{R}_{+}^{2} \backslash\{0\} \quad \forall x \in(-\infty, 0), 0 \notin \operatorname{sol}(\mathrm{VVI})_{3}$. But, since $\left(x, 2 x^{2}\right) \notin$ $-\mathbb{R}_{+}^{2} \backslash\{0\} \forall x \in(-\infty, 0], 0 \in \operatorname{sol}(\mathrm{MVVI})$. Moreover, we can easily check that $\operatorname{sol}(\mathrm{VVI})_{3}=(-\infty, 0)$ and $\operatorname{sol}(\mathrm{MVVI})=(-\infty, 0]$.

EXAMPLE 2.4. Let $f_{1}(x)=x, f_{2}(x)=|x|$ and $D=(-\infty, 0]$.
It is clear that $0 \in E f f(\mathrm{VP})$. Since $\left(f_{1}(x)-f_{1}(0)\right) /\left(f_{2}(0)-f_{2}(x)\right)=1 \forall x \in$ $(-\infty, 0), 0 \in \operatorname{Pr} E f f(\mathrm{VP})$. Since there exist $x \in D$ and $\xi \in[-1,1]$ such that $(x, \xi x) \in-\mathbb{R}_{+}^{2} \backslash\{0\}, 0 \notin \operatorname{sol}(\mathrm{VVI})_{1}$. Moreover, the above Example 2.1 tells us that the inclusion: $\operatorname{sol}(\mathrm{VVI})_{1} \subset \operatorname{Pr} E f f(\mathrm{VP})$ may not hold. Hence we can not give any inclusion relation between $\operatorname{sol}(\mathrm{VVI})_{1}$ and $\operatorname{Pr} E f f(\mathrm{VP})$.

THEOREM 2.2. The following relations hold

$$
\begin{gathered}
\operatorname{sol}(W V V I)_{1} \subset W E f f(V P)=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(V I)_{\lambda}=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(M V I)_{\lambda} \\
=\operatorname{sol}(W V V I)_{2}=\operatorname{sol}(W V V I)_{3}=\operatorname{sol}(W M V V I)
\end{gathered}
$$

Proof. It can be easily checked that $\operatorname{sol}(\mathrm{WVVI})_{1} \subset W E f f(\mathrm{VP})$. Now we prove that $W E f f(\mathrm{VP})=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}$. By Lemma 1.3, $\bar{x} \in W E f f(\mathrm{VP})$ if and only if $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$, such that \bar{x} is a solution of the following scalar optimization problem (SP):
(SP)

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{p} \lambda_{i} f_{i}(x) \\
\text { subject to } & x \in D
\end{array}
$$

Thus, we can easily check that $W E f f(\mathrm{VP})=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}}$ $\operatorname{sol}(\mathrm{MVI})_{\lambda}$.

Now we prove that $W E f f(\mathrm{VP})=\operatorname{sol}(\mathrm{WMVVI})$.
Let $\bar{x} \notin \operatorname{sol}(\mathrm{WMVVI})$.

Then $\exists x^{*} \in D$ and $\xi_{i}^{*} \in \partial f_{i}\left(x^{*}\right), i=1, \ldots, p$, such that

$$
\left(\left\langle\xi_{1}^{*}, x^{*}-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}^{*}, x^{*}-\bar{x}\right\rangle\right) \in-\operatorname{int} \mathbb{R}_{+}^{p}
$$

Thus $\bar{x} \notin \bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{MVI})_{\lambda}$ and hence $\bar{x} \notin W \operatorname{Eff}(\mathrm{VP})$. Using the method similar to the proof in Theorem 2.1, we can prove that

$$
\operatorname{sol}(\mathrm{WMVVI}) \subset W E f f(\mathrm{VP})
$$

Now we prove that $\bigcup_{\lambda \in \mathbb{R}_{+}^{P} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\operatorname{sol}(\mathrm{WVVI})_{2}=\operatorname{sol}(\mathrm{WVVI})_{3}$.
$\bar{x} \in \operatorname{sol}(\mathrm{WVVI})_{2}$
$\Longleftrightarrow \bar{x} \in D$ and $\exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad i=1, \ldots, p$, such that

$$
\left\{\left(\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots,\left\langle\xi_{p}, x-\bar{x}\right\rangle\right) \mid x \in D\right\} \cap\left(- \text { int } \mathbb{R}_{+}^{p}\right)=\emptyset
$$

\Longleftrightarrow (by separation theorem in Ref. [14], Theorem 3.16] $\bar{x} \in D$ and $\exists \xi_{i} \in$ $\partial f_{i}(\bar{x}), \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ and $r \in \mathbb{R}$ such that

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} z_{i}<r \leqslant \sum_{i=1}^{p} \lambda_{i}\left\langle\xi_{i}, x-\bar{x}\right\rangle \quad \forall x \in D, \quad \forall\left(z_{1}, \ldots, z_{p}\right) \in-i n t \mathbb{R}_{+}^{p} \\
& \Longleftrightarrow \bar{x} \in D \text { and } \exists \xi_{i} \in \partial f_{i}(\bar{x}), \quad \lambda_{i} \geqslant 0, \quad i=1, \ldots, p, \quad\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0 \text { such that }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D \\
& \Longleftrightarrow \bar{x} \in \bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda} .
\end{aligned}
$$

$\bar{x} \in \operatorname{sol}(\mathrm{WVVI})_{3}$
$\Longleftrightarrow \bar{x} \in D$ and the system

$$
\left\langle\begin{array}{c}
\max _{\xi_{1} \in \partial f_{1}(\bar{x})}\left\langle\xi_{1}, x-\bar{x}\right\rangle<0 \\
\vdots \\
\max _{\xi_{p} \in \partial f_{p}(\bar{x})}\left\langle\xi_{p}, x-\bar{x}\right\rangle<0
\end{array}\right\rangle
$$

has no solution $x \in D$
\Longleftrightarrow (by Lemma 1.5) $\bar{x} \in D$ and $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ such that

$$
\sum_{i=1}^{p} \lambda_{i} \max _{\xi_{i} \in \partial f_{i}(\bar{x})}\left\langle\xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ such that

$$
\max _{b \in B}\langle b, x-\bar{x}\rangle \geqslant 0 \quad \forall x \in D,
$$

where $B=\left\{\sum_{i=1}^{p} \lambda_{i} \xi_{i} \mid \xi_{i} \in \partial f_{i}(\bar{x}), i=1, \ldots, p\right\}$
\Longleftrightarrow (by Lemma 1.4) $\bar{x} \in D$ and $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0$ and $b \in B$ such that

$$
\langle b, x-\bar{x}\rangle \geqslant 0 \quad \forall x \in D
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p,\left(\lambda_{1}, \ldots, \lambda_{p}\right) \neq 0, \xi_{i} \in \partial f_{i}(\bar{x}), i=$ $1, \ldots, p$ such that

$$
\begin{aligned}
& \quad\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D \\
& \Longleftrightarrow \bar{x} \in \bigcup_{\lambda \in \mathbb{R}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda} . \\
& \text { Hence } \bigcup_{\lambda \in \mathbb{R}_{+}^{P} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\operatorname{sol}(\mathrm{WVVI})_{2}=\operatorname{sol}(\mathrm{WVVI})_{3}
\end{aligned}
$$

Now we give an example for $(\mathrm{WVVI})_{1}$.
EXAMPLE 2.5. Let $f_{1}(x)=x, f_{2}(x)=\left\{\begin{array}{ll}x^{2}, & x<0 \\ x, & x \geqslant 0\end{array}\right.$ and $D=(-\infty, 0]$.
Then $\operatorname{sol}(\mathrm{WVVI})_{1}=(-\infty, 0)$, but $W E f f(\mathrm{VP})=(-\infty, 0]$. Thus the inclusion $W E f f(\mathrm{VP}) \subset \operatorname{sol}(\mathrm{WVVI})_{1}$ may not hold.

3. Special cases

Now we consider the special cases for $\operatorname{sol}(\mathrm{VVI})_{2}$ and $\operatorname{sol}(\mathrm{VVI})_{3}$, and $\operatorname{sol}(\mathrm{VP})$. For one of the cases, we need the definition for the polyhedral convex function [15]. The convex function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be polyhderal if the epigraph of g is a polyhedral convex subset of \mathbb{R}^{n+1}.

PROPOSITION 3.1. If D is a polyhedral convex set in \mathbb{R}^{n}, then

$$
\operatorname{sol}(V V I)_{2}=\operatorname{Pr} E f f(V P)
$$

Proof. From Theorem 2.1, $\operatorname{PrEff}(\mathrm{VP}) \subset \operatorname{sol}(\mathrm{VVI})_{2}$. Let $\bar{x} \in \operatorname{sol}(\mathrm{VVI})_{2}$. Then $\bar{x} \in D$ and $\exists \xi_{i} \in \partial f_{i}(\bar{x}), i=1, \ldots, p$, such that \bar{x} is an efficient solution of

$$
(V P)^{\prime} \begin{array}{lll}
\text { Minimize } & \left(\left\langle\xi_{1}, x\right\rangle, \ldots,\left\langle\xi_{p}, x\right\rangle\right) \\
\text { subject to } & x \in D .
\end{array}
$$

By Lemma 1.2, $\bar{x} \in D$ is a properly efficient solution of (VP)', and hence by Lemma 1.1, $\exists \lambda_{i}>0, i=1, \ldots, p$, such that $\bar{x} \in D$ is a solution of the following scalar optimization problem:

Minimize $\quad \sum_{i=1}^{p} \lambda_{i}\left\langle\xi_{i}, x\right\rangle$
subject to $x \in D$.
Thus $\bar{x} \in D$ and $\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D$. So, $\bar{x} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$. Hence it follows from Theorem 2.1 that $\bar{x} \in \operatorname{PrEff}(\mathrm{VP})$.

PROPOSITION 3.2. If $D=\left\{x \in \mathbb{R}^{n} \mid\left\langle a_{i}, x\right\rangle \leqslant b_{i}, i=1, \ldots, m\right\}$, where $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$, and $f_{i}, i=1, \ldots, p$, are polyhedral and convex, then

$$
\operatorname{sol}(V V I)_{3}=\operatorname{Pr} E f f(V P)
$$

Proof. $\bar{x} \in \operatorname{sol}(\mathrm{VVI})_{3} \Longleftrightarrow \bar{x} \in D$ is an efficient solution of the following convex vector optimization problem

Minimize $\quad\left(\max _{\xi_{1} \in \partial f_{1}(\bar{x})}\left\langle\xi_{1}, x-\bar{x}\right\rangle, \ldots, \max _{\xi_{p} \in \partial f_{p}(\bar{x})}\left\langle\xi_{p}, x-\bar{x}\right\rangle\right)$ subject to $x \in D$.
$\Longleftrightarrow \bar{x} \in D$ and 0 is an efficient solution of the following convex vector optimization problem

```
Minimize \(\quad\left(\max _{\xi_{1}=\partial f_{1}(\bar{x})}\left\langle\xi_{1}, x\right\rangle, \ldots, \max _{\xi_{p} \in \partial f_{p}(\bar{x})}\left\langle\xi_{p}, x\right\rangle\right)\)
subject to \(x \in D-\bar{x}\).
```

$\Longleftrightarrow\left(\right.$ letting $\left.I(\bar{x})=\left\{i \mid\left\langle a_{i}, \bar{x}\right\rangle=b_{i}\right\}\right)$
$\bar{x} \in D$ and 0 is an efficient solution of the following convex vector optimization problem

$$
\begin{array}{ll}
\text { Minimize } & \left(\max _{\xi_{1} \in \partial f_{1}(\bar{x})}\left\langle\xi_{1}, x\right\rangle, \ldots, \max _{\xi_{p} \in \partial f_{p}(\bar{x})}\left\langle\xi_{p}, x\right\rangle\right) \\
\text { subject to } & \left\langle a_{i}, x\right\rangle \leqslant 0, i \in I(\bar{x}) .
\end{array}
$$

$\Longleftrightarrow \bar{x} \in D$ and 0 is a solution of the following scalar optimization problem

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{p} \max _{\xi_{i} \in \neq f_{i}(\bar{x})}\left\langle\xi_{i}, x\right\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle \leqslant 0, \quad i \in I(\bar{x}), \\
& \max _{\xi_{i} \in \partial f_{i}(\bar{x})}\left\langle\xi_{i}, x\right\rangle \leqslant 0, i=1, \ldots, p .
\end{array}
$$

Since $f_{i}, i=1, \ldots, p$, are polyhedral and convex, $\partial f_{i}(\bar{x})$ are polyhedral, covex and compact (Theorem 23.10 in Ref. [15]) and hence $\partial f_{i}(\bar{x})=$ $\operatorname{co}\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}$, where $\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}$ is the set of all the extreme points of $\partial f_{i}(\bar{x})$ and $\operatorname{co}\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}$ is the convex hull of $\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}$.

Notice that $\max _{\xi \in \partial f_{i}(\bar{x})}\left\langle\xi_{i}, x\right\rangle \leqslant 0 \Longleftrightarrow\left\langle b_{i j}, x\right\rangle \leqslant 0, j=1, \ldots, n(i)$. Thus we have,
$\bar{x} \in \operatorname{sol}(\mathrm{VVI})_{3}$
$\Longleftrightarrow \bar{x} \in D$ and 0 is a solution of the following scalar convex problem

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{p} \max _{\xi_{i} \in \partial f_{i}(\bar{x})}\left\langle\xi_{i}, x\right\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle \leqslant 0, i \in I(\bar{x}), \\
& \left\langle b_{i j}, x\right\rangle \leqslant 0, i=1, \ldots, p, j=1, \ldots, n(i)
\end{array}
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \lambda_{i j} \geqslant 0, i=1, \ldots, p, j=1, \ldots, n(i), \mu_{k} \geqslant 0, k \in I(\bar{x})$ such that

$$
0 \in \sum_{i=1}^{p} \partial f_{i}(\bar{x})+\sum_{i, j} \lambda_{i j} b_{i j}+\sum_{k \in I(\bar{x})} \mu_{k} a_{k}
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \lambda_{i} \geqslant 0, i=1, \ldots, p, \mu_{k} \geqslant 0, k \in I(\bar{x})$ such that

$$
0 \in \sum_{i=1}^{p}\left(1+\lambda_{i}\right) \partial f_{i}(\bar{x})+\sum_{k \in I(\bar{x})} \mu_{k} a_{k}
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \bar{\lambda}_{i}>0, i=1, \ldots, p, \bar{\mu}_{k} \geqslant 0, k \in I(\bar{x})$ such that

$$
0 \in \sum_{i=1}^{p} \bar{\lambda}_{i} \partial f_{i}(\bar{x})+\sum_{k \in I(\bar{x})} \bar{\mu}_{k} a_{k}
$$

$\Longleftrightarrow\left(\right.$ letting $\left.\bar{\mu}_{k}=0 \quad \forall k \notin I(\bar{x})\right) \bar{x} \in D$ and $\exists \bar{\lambda}_{i}>0, i=1, \ldots, p, \bar{\mu}_{k} \geqslant 0, k \in$ $I(\bar{x})$ such that

$$
0 \in \sum_{i=1}^{p} \bar{\lambda}_{i} \partial f_{i}(\bar{x})+\sum_{k=1}^{m} \bar{\mu}_{k} a_{k} \quad \text { and } \quad \bar{\mu}_{k}\left(a_{k}^{T} \bar{x}-b_{k}\right)=0, \quad k=1, \cdots, m
$$

$\Longleftrightarrow \bar{x} \in D$ and $\exists \bar{\lambda}_{i}>0, i=1, \ldots, p$ such that \bar{x} is a solution of the following scalar optimization problem

```
Minimize \(\quad \sum_{i=1}^{p} \bar{\lambda}_{i} f_{i}(x)\)
subject to \(\left\langle a_{k}, x\right\rangle \leqslant b_{k}, k=1, \ldots, m\)
```

\Longleftrightarrow (by Lemma 1.1) $\bar{x} \in \operatorname{Pr} E f f(\mathrm{VP})$.
Hence $\operatorname{sol}(\mathrm{VVI})_{3}=\operatorname{Pr} E f f(\mathrm{VP})$.

PROPOSITION 3.3. If sol $(V I)_{\lambda}$ is nonempty and singleton for any $\lambda \in$ $\mathbb{R}_{+}^{p} \backslash\{0\}$, then $\operatorname{Eff}(V P)=W E f f(V P)=\bigcup_{\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}}(V I)_{\lambda}$.

Proof. We know that $E f f(\mathrm{VP}) \subset W E f f(\mathrm{VP})$. Let $\bar{x} \in W E f f(\mathrm{VP})$. Then by Theorem 2.2, there exists $\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}$ such that $\bar{x} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$. Thus, $\exists \xi_{i} \in$ $\partial f_{i}(\bar{x}), i=1, \ldots, p$, such that

$$
\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D .
$$

Suppose that $x^{*} \in D$ and $\left(f_{1}\left(x^{*}\right), \ldots, f_{p}\left(x^{*}\right)\right)-\left(f_{1}(\bar{x}), \ldots, f_{p}(\bar{x})\right) \in-\mathbb{R}_{+}^{p}$. Then $\sum_{i=1}^{p} \lambda_{i} f_{i}\left(x^{*}\right) \leqslant \sum_{i=1}^{p} \lambda_{i} f_{i}(\bar{x})$ for any $x \in D$. Since f_{i} is convex, we have

$$
\begin{aligned}
\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x^{*}-\bar{x}\right\rangle & \leqslant \sum_{i=1}^{p} \lambda_{i} f_{i}\left(x^{*}\right)-\sum_{i=1}^{p} \lambda_{i} f_{i}(\bar{x}) \\
& \leqslant 0
\end{aligned}
$$

Hence, for any $x \in D$,

$$
\begin{aligned}
\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-x^{*}\right\rangle & =\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle+\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, \bar{x}-x^{*}\right\rangle \\
& \geqslant\left\langle\sum_{i=1}^{p} \lambda_{i} \xi_{i}, x-\bar{x}\right\rangle \\
& \geqslant 0 .
\end{aligned}
$$

Thus $x^{*} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$. Since $\operatorname{sol}(\mathrm{VI})_{\lambda}$ is singleton, $x^{*}=\bar{x}$ and hence $f_{i}\left(x^{*}\right)=f_{i}(\bar{x})$, $i=1, \ldots, p$. Thus $\bar{x} \in E f f(\mathrm{VP})$. Consequently, $E f f(\mathrm{VP})=W E f f(\mathrm{VP})$. By Theorem 2.2, $E f f(\mathrm{VP})=W E f f(\mathrm{VP})=\bigcup_{\lambda \in \mathbb{R}_{\uparrow}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}$.

REMARK 3.1. If $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$, are continuously differentiable and strongly convex (see Ref. [16] for the definition of the strong convexity) and $\nabla f_{i}(\cdot), i=1, \ldots, p$, are Lipschitz on D, then $\operatorname{sol}(\mathrm{VI})_{\lambda}$ is nonempty and singleton for any $\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}$.

The following example comes from Ref. [17].
EXAMPLE 3.1. The assumption of Proposition 3.3 is essential. Let $f_{1}(x, y)$ $=(1 / 2) x^{2}, f_{2}(x, y)=(1 / 2) y^{2}$ and $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\right\}$.

Then $\operatorname{sol}(\mathrm{VI})_{\lambda}$ is nonempty for any $\lambda \in \mathbb{R}_{+}^{p} \backslash\{0\}$. Moreover, $\operatorname{sol}(\mathrm{VI})_{(1,0)}=$ $\left\{(0, y) \in \mathbb{R}^{2} \mid 0 \leqslant y \leqslant 1\right\}$, and hence $\operatorname{sol}(\mathrm{VI})_{(1,0)}$ is not a singleton. However, $E f f(\mathrm{VP})=\{(0,0)\}$ and $W E f f(\mathrm{VP})=\bigcup_{\lambda \in \mathbb{R}_{\downarrow}^{p} \backslash\{0\}} \operatorname{sol}(\mathrm{VI})_{\lambda}=\left\{(x, 0) \in \mathbb{R}^{2} \mid 0 \leqslant\right.$ $x \leqslant 1\} \cup\left\{(0, y) \in \mathbb{R}^{2} \mid 0 \leqslant y \leqslant 1\right\}$.

DEFINITION 3.1. A subset $M \subset \mathbb{R}^{n}$ is said to be a strictly convex body if int $M \neq \emptyset$, and for any $x, x^{\prime} \in M, x \neq x^{\prime}$,

$$
\left\{\lambda x+(1-\lambda) x^{\prime} \mid \lambda \in(0,1)\right\} \subset \text { int } M .
$$

Following the approach of the proof in Theorem 2 in Ref. [18], we can obtain the following proposition

PROPOSITION 3.4. Suppose that
(i) $\bar{x} \in \operatorname{sol}(W V V I)_{1}$,
(ii) there exist $\xi_{i} \in \partial f_{i}(\bar{x}), i=1, \ldots, p$, such that the linear operator $v \mapsto$ $\left(\left\langle\xi_{1}, v\right\rangle, \ldots,\left\langle\xi_{p}, v\right\rangle\right)$ is surjective, and
(iii) the constraint set D is a strictly convex body in \mathbb{R}^{n}.

Then $\bar{x} \in \operatorname{sol}(V V I)_{3}$ and hence $\bar{x} \in E f f(V P)$.
Proof. Let $\xi_{i} \in \partial f_{i}(\bar{x}), i=1, \ldots, p$ be such that ξ_{i} is in assumption (ii) and $\lambda \in(0,1)$ and $\Lambda(v)=\left(\left\langle\xi_{1}, v\right\rangle, \ldots,\left\langle\xi_{p}, v\right\rangle\right)$ for any $v \in \mathbb{R}^{n}$. Then $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is a continuous and surjective linear operator.

Suppose to the contrary that $\bar{x} \notin \operatorname{sol}(\mathrm{VVI})_{3}$. Then we can choose $z \in D$ such that

$$
\begin{equation*}
\Lambda(z-\bar{x}) \in-\mathbb{R}_{+}^{p} \backslash\{0\} . \tag{3.1}
\end{equation*}
$$

Moreover $z_{\lambda}:=\lambda z+(1-\lambda) \bar{x} \in \operatorname{int} D$ since D is a strictly convex body. Thus there exists $\epsilon>0$ such that

$$
B\left(z_{\lambda}, \epsilon\right) \subset D,
$$

where $B\left(z_{\lambda}, \epsilon\right)$ is the closed ball centered at z_{λ} with radius ϵ. Let $y_{\lambda}=$ $\Lambda\left(z_{\lambda}-\bar{x}\right)$. Then $y_{\lambda}=\lambda \Lambda(z-\bar{x})$, and hence it follows from (3.1) that

$$
\begin{equation*}
y_{\lambda} \in-\mathbb{R}_{+}^{p} \backslash\{0\} . \tag{3.2}
\end{equation*}
$$

By open mapping theorem, $\Lambda\left(B\left(z_{\lambda}, \epsilon\right)-\bar{x}\right)$ is a neighborhood of y_{λ}. Thus there exists $\rho>0$ such that

$$
\begin{equation*}
B\left(y_{\lambda}, \rho\right) \subset \Lambda\left(B\left(z_{\lambda}, \epsilon\right)-\bar{x}\right) . \tag{3.3}
\end{equation*}
$$

From (3.2), $y_{\lambda} \in B\left(y_{\lambda}, \rho\right) \cap\left(-\mathbb{R}_{+}^{p}\right)$. So, by Corollary 6.3.2 in Ref. [15],

$$
B\left(y_{\lambda}, \rho\right) \cap\left(-\operatorname{int} \mathbb{R}_{+}^{p}\right) \neq \emptyset
$$

Let $y^{*} \in B\left(y_{\lambda}, \rho\right) \cap\left(-\right.$ int $\left.\mathbb{R}_{+}^{p}\right)$. Then from (3.3), there exists $x^{*} \in D$ such that $\Lambda\left(x^{*}-\bar{x}\right) \in-$ int \mathbb{R}_{+}^{p}. This means that $\bar{x} \notin \operatorname{sol}(\mathrm{WVVI})_{1}$. This contradicts the assumption (i). Consequently, $\bar{x} \in \operatorname{sol}(\mathrm{VVI})_{3}$. It follows from Theorem 2.1 that $\bar{x} \in E f f(\mathrm{VP})$.

EXAMPLE 3.2. Let $f_{1}(x, y)=x, \quad f_{2}(x, y)=\sqrt{x^{2}+(y-1)^{2}}-y \quad$ and $D=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-1)^{2}+(y-1)^{2} \leqslant 1\right\}$. Then $\partial f_{1}(0,1)=\{(1,0)\}$ and $\partial f_{2}(0,1)=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+(y+1)^{2} \leqslant 1\right\}$. We can easily check that $(0,1) \in$ $\operatorname{sol}(\mathrm{WVVI})_{1}$, and that assumptions (ii) and (iii) are satisfied. Hence it follows from Proposition 3.4 that $(0,1) \in \operatorname{sol}(\mathrm{VVI})_{3}$ and $(0,1) \in E f f(\mathrm{VP})$.

PROPOSITION 3.5. If there exists $i \in\{1, \ldots, p\}$ such that the function f_{i} is strictly convex and $\bar{x} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$, where $\lambda=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}_{+}^{p}$ and 1 is the i th component of λ, then $\bar{x} \in E f f(\mathrm{VP})$.

Proof. Since $\bar{x} \in \operatorname{sol}(\mathrm{VI})_{\lambda}$, there exists $\xi_{i} \in \partial f_{i}(\bar{x})$ such that

$$
\left\langle\xi_{i}, x-\bar{x}\right\rangle \geqslant 0 \quad \forall x \in D
$$

and hence by the strict convexity of f_{i},

$$
f_{i}(x)>f_{i}(\bar{x}) \quad \forall x \in D
$$

Hence $\bar{x} \in E f f(\mathrm{VP})$.

REMARK 3.2. Let us consider Example 2.2 again. Since $(0,0) \in \partial f_{1}(0,0)$, it is obvious that $(0,0) \in \operatorname{sol}(\mathrm{VI})_{(1,0)}$. Since f_{1} is strictly convex, it follows from Proposition 3.5 that $(0,0) \in E f f(\mathrm{VP})$.

References

1. Sawaragi, Y., Nakayama, H. and Tanino, T. (1985), Theory of Multiobjective Optimization, Academic Press, New York, NY.
2. Giannessi, F. (1998), On Minty variational principle. In: Giannessi, F. Komlosi, S. and Rapcsák, T. (eds.), New Trends in Mathematical Programming, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 93-99.
3. Lee, G.M. (2000), On relations between vector variational inequality and vector optimization problem. In: Yang, X.Q., Mees, A.I., Fisher, M.E. and Jennings, L.S. Progress in Optimization, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 167-179.
4. Lee, G.M. and Kim, M.H. (2001), Remarks on relations between vector variational inequality and vector optimizaiton problem, Nonlienar Analysis: Theory, Methods and Applications 47, 627-635.
5. Lee, G.M. and Kim, M.H. (2003), On second order necessary optimality conditions for vector optimization problems, Journal of the Korean Mathematical Society 40, 287-305.
6. Ward, D.E. and Lee, G.M. (2002), On relations between vector optimization problems and vector variational inequalities, Journal of Optimization Theory and Applications 113, 583-596.
7. Yang, X.Q. (1997), Vector variational inequality and multiobjective pseudolinear programming, Journal of Optimization Theory and Applications 95, 729-734.
8. Geoffrion, A.M. (1968), Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis Applications 22, 618-630.
9. Isermann, H. (1974), Proper efficiency and the linear vector maximum problem, Operations Research 22, 189-191.
10. Aubin, J.P. (1979), Applied Functional Analysis, John Wiley \& Sons, Inc., New York.
11. Mangasarian, O.L. (1969), Nonlinear Programming, McGrow Hill, New York.
12. Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Wiley-Interscience, New York.
13. Lee, G.M., Kim, D.S., Lee, B.S. and Yen, N.D. (1998), Vector variational inequality as a tool for studying vector optimization problems, Nonlinear Analysis: Theory, Methods and Applications 34, 745-765.
14. Jahn, J. (1986), Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt am Main, Germany.
15. Rockafellar, R.T. (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.
16. Vial, J.-P. (1983), Strong and weak convexity of sets and functions, Mathematical Operations Research 8, 231-259.
17. Lee, G.M. and Yen, N.D. (2001), A result on vector variational inequalities with polyhedral constraint sets, Journal of Optimization Theory Applications 109, 193-197.
18. Yen, N.D. and Lee, G.M. (2000), On monotone and strongly monotone vector variational inequalities. In: Giannessi, F. (ed.), Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 467-478.

[^0]: \star This work was supported by the Brain Korea 21 Project in 2003. The authors wish to express their appreciation to the anonymous referee for giving valuable comments.

